Symmetry Engineering of Graphene Plasmonic Crystals.

نویسندگان

  • Kitty Y M Yeung
  • Jingyee Chee
  • Yi Song
  • Jing Kong
  • Donhee Ham
چکیده

The dispersion relation of plasmons in graphene with a periodic lattice of apertures takes a band structure. Light incident on this plasmonic crystal excites only particular plasmonic modes in select bands. The selection rule is not only frequency/wavevector matching but also symmetry matching, where the symmetry of plasmonic modes originates from the point group symmetry of the lattice. We demonstrate versatile manipulation of light-plasmon coupling behaviors by engineering the symmetry of the graphene plasmonic crystal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Far-infrared graphene plasmonic crystals for plasmonic band engineering.

We introduce far-infrared graphene plasmonic crystals. Periodic structural perturbation-in a proof-of-concept form of hexagonal lattice of apertures-of a continuous graphene medium alters delocalized plasmonic dynamics, creating plasmonic bands in a manner akin to photonic crystals. Fourier transform infrared spectroscopy demonstrates band formation, where far-infrared irradiation excites a uni...

متن کامل

Far-infrared Graphene Plasmonic Crystals for Plasmonic Band Engineering — SUPPORTING INFORMATION —

Our graphene plasmonic crystals are realized by creating hexagonal lattices of apertures in continuous graphene media. The hexagonal lattice—whether its aperture is circularly or hexagonally shaped—possesses the C6v point group symmetry with 6-fold rotation axes and 6 reflection planes; see Fig. S1 in case of the hexagonal lattice with circular apertures. Following the crystallographic conventi...

متن کامل

Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...

متن کامل

Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals

In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defe...

متن کامل

Two-dimensional crystals and their coupling to plasmonic nanostructures

Over the past few years atomically-thin materials, such as graphene, boron nitride and the group-VI transition metal dichalcogenides (TMDC), have stimulated intense interdisciplinary research in condensed matter physics, chemistry and electrical engineering. Due to their unique mechanical, electrical and optoelectronic properties they have already been implemented into flexible electronic and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 2015